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Abstract. Although the Lagrangian method is a powerful dual search approach in integer program-
ming, it often fails to identify an optimal solution of the primal problem. Thep-th power Lagrangian
method developed in this paper offers a success guarantee for the dual search in generating an optimal
solution of the primal integer programming problem in an equivalent setting via two key transforma-
tions. One other prominent feature of thep-th power Lagrangian method is that the dual search only
involves a one-dimensional search within [0,1]. Some potential applications of the method as well as
the issue of its implementation are discussed.
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1. Introduction

The following general class of finite integer programming problems is considered
in this paper:

(P ) min f (x) (1.1a)

s.t. gi(x) 6 bi, i = 1,2, . . . , m, (1.1b)

x ∈ X ⊆ Rn, (1.1c)

whereX is a finite integer set. Problem(P ) is termed the primal problem. Without
loss of generality,f andgi, i = 1,2, . . . , m, are assumed to be strictly positive
for all x ∈ X. Constraints in (1.1b) are called Lagrangian constraints. DefineF to
be the feasible region of the decision vectorx in (P ),

F = {x | gi(x) 6 bi, i = 1,2, . . . , m; x ∈ X}. (1.2)

Denote byv(Q) the optimal value of an optimization problem(Q). Thus the
optimal objective value of the primal problem isv(P ).
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The dual search method plays a significant role in integer optimization. The
Lagrangian methods are widely used in linear integer programming in finding
an optimal solution, see, e.g., Geoffrion (1974), Fisher and Shapiro (1974), Bell
and Shapiro (1977), Shapiro (1979), and Fisher (1981). In most situations, the
Lagrangian methods provide a lower bound forv(P ). Incorporating the set of
Lagrangian constraints into the objective function by introducing a nonnegative
Lagrangian multiplier vector,λ = (λ1, λ2, . . . , λm) ∈ Rm+, yields a Lagrangian
relaxation:

(PRλ) min
x∈X

L(x, λ) = f (x)+
m∑
i=1

λi[gi(x)− bi]. (1.3)

The Lagrangian dual is an optimization problem inλ,

(D) max
λ∈Rm+

[v(PRλ)]. (1.4)

The Lagrangian method searches for an optimal solution of(P ) via maximizing
the dual functionv(PRλ).

If x̂ solves both(P ) and(PRλ̂) with λ̂ ∈ Rm+, then λ̂ is said to be an optimal
generating Lagrangian multiplier vector. Ifx̂ solves both(P ) and (PRλ̂) with λ̂
∈ Rm+, and λ̂ solves the dual problem(D), then {x̂, λ̂} is said to be an optimal
primal-dual pair of(P ).

While the Lagrangian method is a powerful constructive dual search method, it
often fails to identify an optimal solution of the primal integer optimization prob-
lem. Two critical situations could be present that prevent the Lagrangian method
from succeeding in the dual search. Firstly, the optimal solution of(P ) may not
even be generated by solving(PRλ) for anyλ > 0. Secondly, the optimal solution
to (PRλ∗), with λ∗ being a solution to the dual problem(D), is not necessarily an
optimal solution to(P ), or even not feasible. The first situation mentioned above
is associated with the existence of an optimal generating Lagrangian multiplier
vector. The second situation is related to the existence of an optimal primal-dual
pair.

As an illustrative example, let us consider Example 5.12 in Parker and Rardin
(1988):

min 3x1 + 2x2 (1.5)

s.t. g1(x) = 10− 5x1 − 2x2 6 7,

g2(x) = 15− 2x1 − 5x2 6 12,

x ∈ X =
 integer

06 x1 6 1, 06 x2 6 2
8x1+ 8x2 > 1

 .
Note that in order to conform with the problem assumption in (1.1) the two Lag-
rangian constraints in (1.5) take forms equivalent to the original Lagrangian con-
straints in Ex. 5.12 of Parker and Rardin (1988). The explicit expression of setX is
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X = {(0,1), (0,2), (1,0), (1,1), (1,2)}. It is easy to check that only(0,2), (1,1),
and(1,2) are feasible for the problem. The optimal solution isx∗ = (0,2) with op-
timal valuev(P ) = 4. If the conventional Lagrangian method is applied, the solu-
tions,(1,0) and(0,1), to problem(PRλ∗) with λ∗ = (1/3,0) being the maximizer
of (D) are not optimal solutions of(P ). They are both infeasible for(P ).

The main purpose of this paper is to integrate two equivalent transformations
that ensure the existence of an optimal primal-dual pair in an equivalent problem
setting, thus offering a success guarantee for the dual search in generating an op-
timal solution of the primal integer programming problem. Based on the existence
of an optimal primal-dual pair, we propose a convergentp-th power Lagrangian
method. An optimal solution to a Lagrangian relaxation problem is obtained at
each iteration of the method and a new multiplier is generated via dual search. One
prominent feature is that the dual search only involves a one-dimensional search of
a scalar Lagrangian multiplier within interval [0,1].

The organization of this paper is as follows. In Section 2, at-norm surrog-
ate constraint method is adopted to construct a single-constraint surrogate model
that is exactly equivalent to the primal problem. The surrogate constraint method
developed in this paper is based on a similar technique recently developed in
Li (1999) for a more general problem setting. In Section 3, ap-th power trans-
formation is investigated. Applying thep-th power transformation to the objective
function guarantees the existence of an optimal primal-dual pair, thus ensuring the
success of the dual search. In Section 4, the results in Sections 2 and 3 lead to the
development of thep-th power Lagrangian method. In Section 5, two classes of
nonlinear integer programming problems with real-world background are presen-
ted to show the potential applications of the proposedp-th power Lagrangian
method. The paper concludes in Section 6 with suggestions for future research.

2. Equivalent t-norm surrogate constraint formulation

The use of the surrogate constraint formulation in integer programming was in-
vestigated in Glover (1968), Karwan and Rardin (1979) and Karwan and Rardin
(1980). The surrogate constraint method converts a mathematical programming
problem with multiple constraints into a one with a single aggregated constraint
using a multiplier vector. The multiplier vector is successively adjusted such that
a surrogate dual is maximized. The surrogate dual in general, however, does not
guarantee the generation of an optimal solution of the primal problem. A surrogate
strategy termedp-norm surrogate constraint method was recently developed in Li
(1999) for general integer programming problems that yields an exact equivalence
between the primal problem and the surrogated one without any assumption of
convexity. We will give in this section a revised version of thep-norm surrogate
formulation in Li (1999).

Problem(P ) can be always converted to an equivalent form withb1 = b2 =
· · · = bm. We thus further assume, without loss of generality, thatb1 = b2 =
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· · · = bm = b > 0 in (1.1). Problem(P ) is then equivalent to the following
single-constraint problem:

min f (x) (2.6a)

s.t. gM(x) := max{g1(x), . . . , gm(x)} 6 b, (2.6b)

x ∈ X. (2.6c)

Let g(x) = (g1(x), . . . , gm(x)). Note that the nonsmooth functiongM(x) is ex-
actly the infinite norm‖g(x)‖∞, which can be approximated by thet-th norm

‖g(x)‖t = t
√[g1(x)]t + . . .+ [gm(x)]t

ast tends to infinity. We further have

gM(x)
t
√
m
6 ‖g(x)‖t

t
√
m
6 gM(x). (2.7)

A t-norm surrogate constraint formulation of(P ) is formed by replacinggM(x) in
(2.6) byGt(x) = ‖g(x)‖t / t

√
m for t > 0,

(St) min f (x) (2.8a)

s.t. Gt (x) 6 b, (2.8b)

x ∈ X. (2.8c)

Let Ft denote the feasible region of(St),

Ft = {x | Gt(x) 6 b; x ∈ X}.
It is clear from (2.7) thatF ⊆ Ft for anyt > 0. The surrogate problem(St) is thus
a relaxation of(P ) whent > 1. The following theorem shows that the setsFt and
F will be identical if t is chosen sufficiently large.

THEOREM 2.1. Assume thatX \ F 6= ∅. Let

U = min{gM(x)
b
| x ∈ X \ F }. (2.9)

ThenF = Ft holds for all t > t0, wheret0 = ln(m)/ ln(U).

Proof. SinceF ⊆ Ft , we only need to proveFt ⊆ F . We first note from (2.9)
thatU > 1 sincegM(x) > b for anyx ∈ X \ F . Hence, we havet0 > 0. If t > t0,
then

min{gM(x)
b t
√
m
| x ∈ X \ F } > 1. (2.10)

For anyx̂ ∈ X \ F , from (2.7) and (2.10), we have

Gt(x̂)

b
> gM(x̂)

b t
√
m
> 1,
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that is,x̂ 6∈ Ft and henceFt ⊆ F . 2
The boundt0 is smaller in general situations than the one obtained in Li (1999).

Under a mild condition, an explicit bound oft in Theorem 2.1 can be specified.

COROLLARY 2.1. Suppose that allgi, i = 1, 2, . . . , m, are integer-valued func-
tions, e.g., polynomial functions with integer coefficients, andb is a positive integer.
ThenF = Ft for all t > t1, where

t1 = ln(m)

ln[(1+ b)/b] . (2.11)

Proof. SincegM(x) > b + 1 for all x ∈ X \ F , we haveU > (1+ b)/b. The
conclusion then follows from Theorem 2.1. 2

By selecting a sufficiently larget , all infeasible solutions of the primal problem
will be excluded fromFt . In other words, the feasible set defined by thet-norm
surrogate constraint,Ft , will exactly match the feasible set of the primal problem
for a sufficiently larget . For illustration, let us consider the example problem, Ex.
5.12 in Parker and Rardin (1988), which we discussed in Section 1. To make the
right-hand sides equal for the two constraints, we multiplyg1(x) by 12/19 and
g2(x) by 7/19. Applying then thet-norm surrogate constraint method yields the
following formulation,

min 3x1 + 2x2 (2.12)

s.t.
[
(12/19)t (10− 5x1 − 2x2)

t + (7/19)t (15− 2x1 − 5x2)
t
]1/t 6 21/t 84/19,

x ∈ X =
 integer

06 x1 6 1, 06 x2 6 2
8x1 + 8x2 > 1

 .
It can be verified that whent > 9,Ft = F and thet-norm surrogate problem (2.12)
is equivalent to the problem (1.5).

An appropriate single surrogate constraint can be always constructed in aggreg-
ating multiple Lagrangian constraints of the primal problem such that a surrogate
formulation and the primal problem are exactly equivalent. This result offers a basis
in developing thep-th power Lagrangian method in the next section.

3. p-th power transformation

We have shown in the last section that the problems(St) and(P ) are equivalent
when t > t0. We will develop in this section a dual search scheme using ap-th
power transformation for problem(St) with a fixed t > t0. The convexification
results derived from thep-th power transformation are based on the analysis on



240 D. LI AND X.L. SUN

the perturbation function of(St). The perturbation function associated with(St) is
defined by:

φ(y) = min {f (x) | Gt(x) 6 y; x ∈ X}.
It can be easily seen that the perturbation functionφ is a nonincreasing piecewise-
constant function ofy. The value ofφ remains at a constant level when no new
integer solution with smallerf value becomes feasible. Hence, the perturbation
function is continuous from the right. The domain ofφ(·) is

Y = {y | there existsx ∈ X with Gt(x) 6 y}.
Based on the problem assumption, it is clearY = [y,∞) with y = minx∈X Gt(x).
By the finiteness ofX, there exists a finitey > 0 such thatφ(y) remains at a
constant level, minx∈X f (x), for anyy ∈ [y,∞). Therefore, the number of the
discontinuous points ofφ is finite. List them as{a1, a2, · · · , aN } with

y = a0 < a1 < a2 < · · · < aN = y. (3.13)

If aN 6 b, then(P ) can be reduced to an equivalent unconstrained integer program-
ming problem without considering the constraint. In the following discussion, we
assume thataN > b. Let ci = φ(ai), i = 0,1 . . . , N . By the definition ofφ, we
have

c0 > c1 > c2 > . . . > cN > 0. (3.14)

Now we impose ap-th power on the objective function of(St). Problem(St)
can then be represented by the following equivalent form,

(Pp) min [f (x)]p (3.15a)

s.t. Gt (x) 6 b, (3.15b)

x ∈ X, (3.15c)

wherep > 0. The Lagrangian relaxation of problem(Pp) is given as follows with
a Lagrangian multiplierµ > 0,

(PpRµ) min
x∈X Lp(x, µ) := [f (x)]p + µ[Gt(x)− b]. (3.16)

The Lagrangian dual of(Pp) is,

(Dp) max
µ∈R+

v(PpRµ). (3.17)

Denote byφp(y) the perturbation function associated with(Pp). It is clear that
φp(y) = [φ(y)]p . The domain ofφp(y) and the set of discontinuous points of
φp(y) are still the same as their counterparts inφ(y). Let

8p = {(y, y0) | y0 = φp(y); y ∈ Y },
Ep = {(ai, cpi ) | i = 0,1, . . . , N}. (3.18)

A point inEp will be called anoninferior pointof 8p or φp. Obviously,(y, y0) ∈
Ep iff (y, y0) ∈ 8p and(z, y0) 6∈ 8p for anyz < y.
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LEMMA 3.1. If ak 6 b < ak+1 for a k ∈ {0,1, . . . , N − 1}, then

v(Pp) = cpk (3.19)

and x̂ = arg min{[f (x)]p | Gt(x) 6 ak} is an optimal solution of(Pp) and of(P ).

Proof. The lemma is obvious from the feasibility requirement and the fact that
the perturbation function is nonincreasing. 2
LEMMA 3.2. (i) For anyy ∈ Y , if x∗ solves the perturbated problem

φp(y) = min{[f (x)]p | Gt(x) 6 y; x ∈ X},
then(Gt(x

∗), [f (x∗)]p) ∈ 8p.
(ii) If x∗ solves(PpRµ) for someµ > 0, then(Gt(x

∗), [f (x∗)]p) ∈ Ep.
(iii) For any (ai, c

p

i ) ∈ Ep, there existsx∗ ∈ X such that(ai, c
p

i ) = (Gt (x
∗),

[f (x∗)]p).
(iv) There exists at least onêx ∈ X such thatx̂ solves(P ) and(Gt (x̂), [f (x̂)]p)∈

Ep.

Proof.(i) SinceGt(x
∗) 6 y, by the monotonicity ofφp(y), we have[f (x∗)]p =

φp(y) 6 φp(Gt(x
∗)). On the other hand, sincex∗ is feasible in the perturbated

problemφp(y) = min{[f (x)]p | Gt(x) 6 Gt(x
∗); x ∈ X}, we haveφp(Gt(x

∗)) 6
[f (x∗)]p. Thus,φp(Gt(x

∗)) = [f (x∗)]p, that is,(Gt(x
∗), [f (x∗)]p) ∈ 8p.

(ii) Suppose that there exists anx̂ such that[f (x̂)]p = φp(Gt(x
∗))withGt(x̂) 6

Gt(x
∗). By the definition ofφp, we have,[f (x̂)]p 6 [f (x∗)]p. If [f (x̂)]p <

[f (x∗)]p, then

[f (x̂)]p + µ(Gt(x̂)− b) < [f (x∗)]p + µ(Gt(x
∗)− b),

which contradicts to the optimality ofx∗ in (PpRµ). We therefore haveφp(Gt(x
∗))

= [f (x̂)]p = [f (x∗)]p and thus(Gt(x
∗), [f (x∗)]p) ∈ 8p. If, on the contrary,

(Gt(x
∗), [f (x∗)]p) 6∈ Ep andGt(x

∗) > a0. Then, there exists a(y, y0) ∈ 8p such
thaty < Gt(x

∗) andy0 = φp(y) = [f (x∗)]p. Suppose that[f (x̃)]p = φp(y) with
Gt(x̃) 6 y. Then, we have

[f (x̃)]p + µ(Gt(x̃)− b) < [f (x∗)]p + µ(Gt(x
∗)− b),

which is a contradiction to thatx∗ solves(PpRµ).
(iii) Suppose thatx∗ solves the perturbated problem{[f (x)]p | Gt(x) 6 ai; x ∈

X}, then[f (x∗)]p = c
p

i andGt(x
∗) 6 ai. From part (i), we know that(Gt (x

∗),
[f (x∗)]p) ∈ 8p. By the definition ofEp, we must haveGt(x

∗) = ai and so
(Gt(x

∗), [f (x∗)]p) = (ai, cpi ).
(iv) Let S∗ denote the set of optimal solutions of(P ). For anyx∗ ∈ S∗, it follows

from part (i) that(Gt (x
∗), [f (x∗)]p) ∈ 8p. Let x̂ = arg min{Gt(x

∗) | x∗ ∈ S∗}.
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Figure 1. Perturbation function and its lower envelope.

Then, for anyz < Gt(x̂), we haveφp(z) > [f (x̂)]p and hence(z, [f (x̂)]p) 6∈ 8p.
Therefore,(Gt (x̂), [f (x̂)]p) ∈ Ep. 2

Now we define the lower envelope function ofφp(y) as

ψp(y) =


c
p

0 − µ0(p)(y − a0), a0 6 y 6 a1

c
p

1 − µ1(p)(y − a1), a1 6 y 6 a2

. . . . . .

c
p

N−1 − µN−1(p)(y − aN−1), aN−1 6 y 6 aN
c
p

N , aN 6 y <∞

(3.20)

where

µi(p) = −c
p

i+1 − cpi
ai+1− ai > 0, i = 0,1, . . . , N − 1. (3.21)

It is clear thatφp(y) > ψp(y) for all y ∈ Y andφp(ai) = ψp(ai) = c
p

i for i =
0,1, . . . , N . See Figure 1 for graphical illustration. The lower envelope function
ψp(y) is continuous and piecewise linear. We have the following convexification
result forψp(y).
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THEOREM 3.1. Let

p0 = ln[(α + 1)/α]
ln(β)

(3.22)

with

α = min
06i6N−2

(
ai+2 − ai+1

ai+1 − ai
)
, (3.23)

β = min
06i6N−2

(
ci

ci+1

)
. (3.24)

Thenψp(y) is a convex function ofy whenp > p0.

Proof. We first observe from (3.13) and (3.14) thatα > 0 andβ > 1. Thus,
p0 > 0. By the definition ofψp(y) (cf. (3.20)), the convexity ofψp(y) is equivalent
to the decreasing monotonicity of the sequence{µ0(p), µ1(p), . . . , µN−1(p)}.
From (3.21), the inequalityµi+1(p) < µi(p) is equivalent to

c
p

i+1− cpi+2

ai+2 − ai+1
<
c
p

i − cpi+1

ai+1 − ai ,

which is in turn equivalent to

1− (ci+2/ci+1)
p

(ci/ci+1)
p − 1

<
ai+2 − ai+1

ai+1 − ai . (3.25)

Note that

1− (ci+2/ci+1)
p

(ci/ci+1)p − 1
<

1

(ci/ci+1)p − 1
6 1

βp − 1
(3.26)

and

α 6 ai+2 − ai+1

ai+1− ai . (3.27)

If p > p0, then, by (3.22), we have 1/(βp − 1) 6 α. Thus, from (3.26) and (3.27),
we imply that (3.25) holds for eachi = 0, . . . , N − 2 when p> p0. 2

The implication of Theorem 3.1 is clear. Whenp > p0, ψp(y) becomes a con-
vex function. Thus, a subgradient ofψp(y) exists at everyy = ai , i = 0,1, . . . , N .
Specially, by Lemma 3.2 (iv), a subgradient ofψp exists aty = Gt(x̂), wherex̂ is
an optimal solution of(Pp) andGt(x̂) = min{Gt(x

∗) | x∗ ∈ S∗}, if p > p0. In
summary, the existence of an optimal generating Lagrangian multiplier is guaran-
teed whenp > p0. This convexification result will further lead to the existence of
an optimal primal-dual pair.
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THEOREM 3.2. Let x̂ be such that̂x solves(P ), or equivalentlyx̂ solves(Pp),
andGt(x̂) = min{Gt(x

∗) | x∗ ∈ S∗}, whereS∗ is the set of the optimal solutions
of (P ). Assume that(Gt (x̂), [f (x̂)]p) = (ak, c

p

k ). Then{x̂, µk(p)} is an optimal
primal-dual pair of problem(Pp) whenp > p0.

Proof.We first prove that̂x solves problem(PpRµk(p)). From the feasibility and
optimality of x̂, we haveak+1 > b. By Theorem 3.1,ψp(y) is a convex function
of y whenp > p0 and−µk(p) is a subgradient ofψp(y) at y = Gt(x̂) = ak. We
have

[f (x̂)]p + µk(p)[Gt(x̂)− y] 6 ψp(y) 6 φp(y), ∀ y ∈ Y. (3.28)

For anyx ∈ X, let y = Gt(x). Thenφp(y) 6 [f (x)]p. It follows from (3.28) that

[f (x)]p > φp(y) > [f (x̂)]p + µk(p)[Gt(x̂)−Gt(x)],

which in turn yields

[f (x)]p + µk(p)[Gt(x)− b] > [f (x̂)]p + µk(p)[Gt(x̂)− b]. (3.29)

Sincex ∈ X is arbitrary, (3.29) implies that̂x solves problem(PpRµk(p)).
We now turn to prove thatµk(p) solves(Dp). For any fixedµ > 0, if xµ solves

(PpRµ), then by the definition ofφp(y), we haveφp(Gt(xµ)) 6 [f (xµ)]p. For any
y ∈ Y , suppose that[f (x)]p = φp(y) with Gt(x) 6 y, then

φp(y) = [f (x)]p
> [f (x)]p + µ[Gt(x)− y]
= [f (x)]p + µ[Gt(x)− b] + µ(b − y)
> [f (xµ)]p + µ[Gt(xµ)− b] + µ(b − y)
= [f (xµ)]p + µ[Gt(xµ)− y]. (3.30)

Settingy = ai (i = k, k + 1) in (3.30) and noting thatcpi = ψp(ai) = φp(ai), we
have

c
p

i > [f (xµ)]p + µ[Gt(xµ)− ai], i = k, k + 1. (3.31)
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Moreover, sinceb ∈ [ak, ak+1), there exists aγ ∈ (0,1] such thatb = γ ak + (1−
γ )ak+1. We thus obtain from (3.21) and (3.31) that

v(PpRµk(p)) = [f (x̂)]p + µk(p)[Gt(x̂)− b]
= c

p

k −
c
p

k+1− cpk
ak+1 − ak [ak − (γ ak + (1− γ )ak+1)]

= c
p

k + (1− γ )(cpk+1− cpk )
= γ c

p

k + (1− γ )cpk+1

> γ {[f (xµ)]p + µ[Gt(xµ)− ak]} + (1− γ ){[f (xµ)]p +
µ[Gt(xµ)− ak+1]}

= [f (xµ)]p + µ(Gt(xµ)− b)
= v(PpRµ).

Henceµk(p) solves(Dp) whenp > p0. 2
COROLLARY 3.1. Suppose thatf and gi , i = 1, 2, . . . , m, are integer-valued
functions, e.g., polynomial functions with integer coefficients andb is a positive
integer. Take a positive integert greater thatt1 defined in (2.11). Under the same
assumptions of Theorem 3.2,{x̂, µk(p)} is an optimal primal-dual pair of(Pp) for
all p > p1, where

p1 = ln(g)

ln[(1+ f )/f ] (3.32)

with

g = max{(‖g(x)‖t )t | x ∈ X},
f = max{f (x) | x ∈ X}.

Proof.Note that the constraintGt(x) 6 b in (Pp) is equivalent to(‖g(x)‖t )t 6
mbt . ReplacingGt(x) andb by (‖g(x)‖t )t andmbt in (Pp), respectively, we get an
integer-valued constraint functionGt(x) in (Pp). It follows from (3.23) and (3.24)
that

α > 1

g − 1
,

β > min
16i6N−2

ci+1+ 1

ci+1
> 1+ f

f
.

Thus

p0 6
ln(g)

ln[(1+ f )/f ] = p1.

The corollary then follows from Theorem 3.2. 2
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The implication of Theorem 3.2 and Corollary 3.1 is significant. If the value ofp

is selected to be equal to or larger thanp0 orp1, then an optimal solution of problem
(Pp) is guaranteed to be generated by the dual search. In other words, an optimal
solution of(P ) can be generated by applying the conventional Lagrangian method
to problem(Pp), i.e., the existence of an optimal primal-dual pair is ensured for
(Pp) whenp > p0.

4. p-th power Lagrangian method

Recognizing prominent features of problem(Pp), the following special dual search
method is devised to facilitate the solution process. Set

w = µ

1+ µ.

Problem(PpRµ) can be recast to the following equivalent form,

(Aw) min
x∈X l(x,w) = (1− w)[f (x)]p + w(Gt(x)− b), (4.33)

wherew ∈ [0,1].
On the basis of the previous discussion, a solution algorithm of thep-th power

Lagrangian method is now proposed as follows. Geometrically, the algorithm per-
forms on the noninferior points of the perturbation functionφp. The algorithm
starts to determine the first and the last noninferior points inEp (cf. (3.18)). At
each iteration, the Lagrangian relaxation(Aw) is solved withw = µ/(1 + µ),
where−µ is the slope of the line connecting the two noninferior points of8p that
are corresponding to the best feasible solution and the least infeasible solution up
to the current iteration, respectively. A new noninferior point will be generated if
the optimal solution has not been reached. Eventually, the algorithm will terminate
at two noninferior points of8p that are nearest to the liney = b on the left and
right, respectively.

p-th Power Lagrangian Method (pPLM)

Step 1. Setw = 1. Solve(A1). Denote the optimal solution byx0. If Gt(x
0)−b> 0,

stop. There is no feasible solution. Otherwise setf −0 = [f (x0)]p andd−0 =Gt(x
0).

Step 2. Setw = 0. Solve(A0). Denote the optimal solution byz0. If Gt(z
0)− b

6 0, stop,z0 is the optimal solution. Otherwise setf +0 = [f (z0)]p andd+0 =Gt(z
0).

Step 3. Setk = 0.
Step 4. Compute awk satisfying

l(xk, wk) = l(zk, wk). (4.34)

Step 5. Solve(Awk ). Denote the optimal solution byyk . If xk solves(Awk ), stop,
xk is an optimal solution to(P ). Otherwise, go to Step 6.
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Step 6. If Gt(y
k)− b 6 0, set

f −k+1 = [f (yk)]p, f +k+1 = f +k ,
d−k+1 = Gt(y

k), d+k+1 = d+k ,
xk+1 = yk, zk+1 = zk.

Otherwise ifGt(y
k)− b > 0, set

f −k+1 = f −k , f +k+1 = [f (yk)]p,
d−k+1 = d−k , d+k+1 = Gt(y

k),

xk+1 = xk, zk+1 = yk.
Setk := k + 1. Return to Step 4.

THEOREM 4.1. If p > p0, wherep0 is defined by (3.22), then the algorithm
(pPLM) stops at an optimal solution of(P ) within a finite number of steps.

Proof. Suppose that the algorithm goes through Step 1 and Step 2. We first
observe from Step 1 and Step 6 that

l(xk, wk) = (1− wk)f −k + wk(d−k − b), ∀ k > 0, (4.35)

l(zk, wk) = (1− wk)f +k + wk(d+k − b), ∀ k > 0. (4.36)

Thus, by (4.34), we have

wk = f −k − f +k
(f −k − f +k )+ (d+k − d−k )

, k > 0. (4.37)

From the algorithm,f −k > f +k andd+k > d−k for all k > 0. Equation (4.37) then
implies thatwk ∈ (0,1) for all k > 0.

We now show that if the algorithm stops atk-th iteration, i.e.,xk solves(Awk ),
thenxk is an optimal solution to(P ). From Step 1 and Step 6, we know thatxk

is a feasible solution andzk is an infeasible solution to(P ). Thus, we haved−k 6
b < d+k . By Lemma 3.2 (ii), points(d−k , f

−
k ) and (d+k , f

+
k ) belong to setEp.

We claim that there is no(ai, c
p

i ) ∈ Ep such thatai lies betweend−k and d+k
and hence we can conclude by Lemma 3.1 thatxk is an optimal solution of(P ).
Suppose on the contrary, there exists(ai, c

p

i ) ∈ Ep such thatd−k < ai < d+k , then
ai = λd−k + (1− λ)d+k for someλ ∈ (0,1). Sinceψp(y) is a convex function ofy
and is strictly decreasing in[a0, aN ], we have

c
p

i = ψp(ai)

< λψp(d
−
k )+ (1− λ)ψp(d+k )

= λf−k + (1− λ)f +k . (4.38)
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By Lemma 3.2 (iii), there exists̃x ∈ X such that(ai, c
p

i ) = (Gt(x̃), [f (x̃)]p). We
thus obtain from (4.35), (4.36) and (4.38) that

v(Awk ) 6 (1− wk)[f (x̃)]p + wk(Gt(x̃)− b)
= (1− wk)cpi + wk(ai − b)
< (1− wk)[λf −k + (1− λ)f +k ] + wk[λd−k + (1− λ)d+k − b]
= λ l(xk, wk)+ (1− λ) l(zk, wk)
= l(xk, wk),

where the last equality follows from (4.34). This contradicts to the assumption that
xk solves(Awk ).

Next we prove the finite termination of the algorithm. We notice from (4.34)
that if the algorithm does not stop atk-th iteration, then neitherxk nor zk solves
(Awk ). Let

uk = l(xk, wk) = l(zk, wk). (4.39)

Then

l(yk, wk) < uk. (4.40)

By Lemma 3.2 (iii), there exists ani ∈ {0,1, . . . , N} such that(ai, c
p

i ) = (Gt (y
k),

[f (yk)]p). We will show by contradiction thatd−k 6 Gt(y
k) 6 d+k . Suppose that

Gt(y
k) > d+k , thend+k = λai + (1− λ)d−k for someλ ∈ (0,1). By (4.35), (4.36),

(4.39) and the convexity ofψp(y), we obtain

uk = (1− wk)f +k + wk(d+k − b)
= (1− wk)ψp(d+k )+ wk(d+k − b)
6 (1− wk)[λψp(ai)+ (1− λ)ψp(d−k )] + wk(d+k − b)
= λ{(1− wk)[f (yk)]p + wk(Gt(y

k)− b)} + (1− λ)uk
= λl(yk, wk)+ (1− λ)uk

This contradicts to (4.40). Therefore,Gt(y
k) 6 d+k . Similarly, we can prove

Gt(y
k) > d−k . Since neitherxk nor zk solves(Awk ), we must haved−k < Gt(y

k) <

d+k . Thus, by the updating rules in Step 6, the range of[d−k , d+k ] is strictly decreas-
ing ask increases. Since the setEp is finite, an optimal solution must be reached
at Step 5 within a finite number of steps. 2

Now we demonstrate the solution algorithm by applying (pPLM) to the ex-
ample problem, Ex. 5.12 in Parker and Rardin (1988). The Lagrangian relaxation
of (2.12) is

min Lp(x, µ) = [f (x)]p + µ{[(12/19)g1(x)]t + [(7/19)g2(x)]t − 2× (84/19)t }

s.t. x ∈ X =
 x integer

0 6 x1 6 1, 0 6 x2 6 2
8x1 + 8x2 > 1

 .
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Table 1. Solution process of the example problem (t = p = 9)

k 1 2 3 4

wk 1 0 0.1103 0.16856

yk (0,2) (0,1) (1,0) (0,2) & (1,0)

[f (yk)]p 262,144 512 19,683 262,144 & 19,683

Gt (y
k)− b −1.1291E+ 6 9.8069E+ 5 6.6862E+ 4 −1.1291E+ 6 & 6.6862E+ 4

v(Awk ) −1.1291E+ 6 512 2.4888E+ 4 2.7635E+ 4

xk (0,2) (0,2) (0,2)

f−k 262,144 262,144 262,144

d−k 1.6139E+ 5 1.6139E+ 5 1.6139E+ 5

zk (0,1) (1,0)

f+k 512 19,683

d+
k

2.2712E+ 6 1.3574E+ 6

Table 1 shows the solution process using (pPLM) with t = p = 9. At iteration
4, bothx4 = (0,2) andz4 = (1,0) solve problem(Aw4) with w4 = 0.16856. The
optimal solutionx∗ = (0,2) has thus been successfully identified through the dual
search and is equal tox4 at iteration 4.

In addition to the existence guarantee of a primal-dual pair and the success
guarantee of the dual search associated with thep-th power Lagrangian method, the
reduction in the dimension of the Lagrangian multiplier greatly facilitates the solu-
tion process. The Lagrangian multiplier is a scalar in the thep-th power Lagrangian
method, while it is of anm-dimension in the conventional Lagrangian method.

The emphasis of this paper is to provide a theoretical foundation in character-
izing the existence of optimal generating Lagrangian multiplier vectors and the
existence of optimal primal-dual pairs. The computational aspects of the proposed
p-th power Lagrangian method need to be further explored. Compared to the con-
ventional Lagrangian method, a major disadvantage of thep-th power method is
the nonlinearity inherent in thep-th power transformation (3.15) as well as in the
t-th norm surrogate transformation (2.8). When the original problem is of a linear
form, thep-th power method makes it nonlinear. When the original problem is of
a separable form, thep-th power transformation makes it nonseparable. Promising
application areas of thep-th power method thus seem to be in nonlinear nonsep-
arable integer programming problems. For example, notice that any power of a
zero-one variable is itself. Polynomial zero-one programming problem thus is an
area where thep-th power Lagrangian method could show its computational prom-
ise in problem solving practice. Two classes of nonlinear integer programming
problems are investigated in the next section to show the the potential applications
of the proposedp-th power Lagrangian method.
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5. Applications

Problem(Aw) at the lower level in the dual search can be viewed as a type of ‘un-
constrained’ integer programming problem. The computational aspect in solving
(Aw) is largely dependent on the problem structure. In this section we illustrate po-
tential applications of the proposedp-th power Lagrangian method to two classes
of nonlinear integer programming problems.

PROBLEM 1. Consider a network system consisting ofn subsystems. Letxi
denote the number of the same redundancy components in parallel ini-th sub-
system. The reliability of thei-th subsystem isRi(xi) = 1 − (1 − ri)xi , where
ri ∈ (0,1) is the reliability of a fixed component ini-th subsystem. Also, denote
byCi(xi) the resource consumed in thei-th subsystem and byb the total available
resource. The constrained redundancy optimization problem in a complex network
(Tzafestas (1980)) can be formulated as

min Q(x) = 1− g(R1, R2, . . . , Rn) (5.41a)

s. t. C(x) = h(C1(x1), C2(xn), . . . , Cn(xn)) 6 b, (5.41b)

x ∈ X = {x | Li 6 xi 6 Ui, xi integer, i = 1, . . . , n}, (5.41c)

whereQ(x) andC(x) represent the overall unreliability of the system and the total
resource consumed, respectively, andf andg are in general nonconvex functions
onRn. Inherent properties in the complex reliability system are that 0< Q(x) <

1 andC(x) > 0, for all x ∈ X. Solution methods in the literature for (5.41)
are mainly heuristic, see Tzafestas (1980), Tillman et al. (1980) and Ohtagaki et
al. (1995). When branch and bound approach is used to solve (5.41), one has to
obtain at each node of the search tree a global optimal solution to a nonlinear
constrained nonconvex optimization problem, for which few efficient methods are
known (Horst and Tuy (1993)). Now we apply thep-th power Lagrangian method
to (5.41) by incorporating the nonlinear constraintC(x) 6 b into the objective
function. In consideration of computational stability, we take exponential to the
objective functionQ(x). Since (5.41) is a singly inequality constrained problem,
its p-th power Lagrangian relaxation(Aw) (cf. (4.33)) is

min
x∈X

(1− w)exp(pQ(x))+ w(C(x)− b). (5.42)

This problem is much more tractable than (5.41) as the branch and bound method
for (5.42) now involves solving an unconstrained global optimization problem over
a box set at each node of the search tree. A number of computational implementable
algorithms have been developed to globally minimize a nonconvex function over a
box set, based on both deterministic approaches (see, e.g., Barhen et al. (1997), Ge
(1990) and Horst and Tuy (1993)) and stochastic approaches (see, e.g., Cvijović
and Klinowski (1995) and Rinnoy Kan and Timmer (1987a, b)).
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Now consider an instance of problem (5.41) for a bridge network with 5 ele-
ments (Tzafestas (1980)):

min Q(x) = 1− R1R2−Q2R3R4−Q1R2R3R4

− R1Q2Q3R4R5−Q1R2R3Q4R5

s. t. C(x) = x1x2 + 3x2x3+ 3x2x4+ x1x5 6 28,

16 xi 6 6, xi integer, i = 1, · · · ,5,
whereQi = 1− Ri := 1− Ri(xi), r1 = 0.7, r2 = 0.85, r3 = 0.75, r4 = 0.8,
r5 = 0.9. The optimal solution of this example isx∗ = (2,1,4,4,1) withQ(x∗) =
0.006569. Takep = 10 in algorithm (pPLM). At each iteration of the algorithm,
the box-constrained integer programming(Aw) (cf. (5.42)) is solved by a branch
and bound procedure. The algorithm stops at iteration 7 with the optimal solution
x7 = (2,1,4,4,1).

PROBLEM 2. Consider the following integer convex programming:

min f (x) (5.43a)

s.t. gi(x) 6 0, i = 1, . . . , m, (5.43b)

x ∈ X = {x | Ax 6 b, Bx = c, x is integral}, (5.43c)

wheref andgi (i = 1, . . . , m) are nonlinear convex functions,A ∈ Rl1×n, B ∈
Rl2×n, b ∈ Rl1, c ∈ Rl2, andX is a finite set.

Optimization problems with the structure given in (5.43) arise in many areas of
practical interests (see, e.g., Cooper (1981), Kraay et al. (1991) and Sung and Cho
(1999)). Computational difficulty, however, may be caused by the nonlinear con-
straints (5.43b) when outer approximation algorithm (Fletcher and Leyffer (1994))
or branch and bound method (Gupta and Ravindran (1985)) is adopted to solve
(5.43). Thep-th power Lagrangian method presented in this paper provides an
approach to reduce (5.43) to a sequence of linearly constrained convex integer pro-
gramming problems. In fact, by Theorem 2.1, (5.43) has the following equivalent
form for a suitablet > 0 (cf. (3.15)):

min exp(pf (x)) (5.44a)

s.t.
m∑
i=1

exp(tgi(x)) 6 m, (5.44b)

x ∈ X, (5.44c)

where we have taken exponential transformations tof (x) andgi(x) 6 0 (i =
1, . . . , m). Thus, thep-power Lagrangian relaxation(Aw) of (5.44) is

min (1− w)exp(pf (x))+ w(
m∑
i=1

exp(tgi(x))−m) (5.45a)

s.t. x ∈ X. (5.45b)
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It is clear that for anyp > 0 andt > 0, (5.45) is a linearly constrained convex
integer programming, for which various algorithms have been developed by ex-
ploiting the polyhedral nature of the constraint setX (see Cooper (1981), Gupta and
Ravindran (1985), Michelon and Maculan (1991) and Skorin-Kapov and Granot
(1987)).

Consider the following example of problem (5.43):

min f (x) = 1/200

(
4∑
i=1

(x2
i − 2)2+ (x2

5 − 1)2
)

s. t. g1(x) = x2
1 + (x2 − 5)4+ x2

3 + (x4+ 5)4 −
− 3x1x2 − x3x4+ x5 − 7006 0,

x ∈ X =


x integer

−x1+ 2x2 − 2x3 + 5x4 − 26 0,
2x1 − x2− 2x3 + x5 − 26 0,
− 46 xi 6 4, i = 1, . . . ,5.


The optimal solution of this example isx∗ = (2,2,1,0,1) with f (x∗) = 0.065.
We takep = 8 in algorithm (pPLM). The linearly constrained convex integer
programming(Aw) at each iteration is solved by a branch and bound procedure.
After 8 iterations, the algorithm stops at the optimal solutionx8 = (2,2,1,0,1).

6. Conclusions

Theoretical breakthroughs have been made in this paper to guarantee the success of
the dual search by ensuring the existence of a primal-dual pair in integer program-
ming. Two key equivalent transformations are involved in the solution process,
the t-norm surrogate constraint formulation that converts an integer problem with
multiple Lagrangian constraints into an equivalent one with a single surrogate Lag-
rangian constraint, and thep-th power transformation that takesp-th power on the
objective function. When the values oft andp are selected large enough, these two
equivalent transformations ensure the existence of an optimal primal-dual pair, in
a new equivalent setting, for problems where an optimal primal-dual pair may not
exist in the original setting.

The results presented in this paper can be also viewed as a companion of Li
(1995) in which a convexification scheme usingp-th power transformation is de-
veloped for general nonconvex nonlinear programming problems. It reveals, in Li
(1995), that a saddle point can be generated for a class of nonconvex optimization
problems in an equivalent representation space and the primal-dual method is then
guaranteed to succeed with a zero duality gap. In a similar manner, thep-th power
transformation is applied in this paper to the perturbation function of integer pro-
gramming problems. Less can be achieved, however, in the integer programming
case than in the nonlinear programming case, as we observe in the paper. We
can only convexify the lower envelope function of the perturbation function,ψp,
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not the perturbation function itself. While thep-th power Lagrangian method can
guarantee to generate an optimal solution of problem(Pp) and problem(P ) via
dual search, the duality gap is in general nonzero. Specifically, the duality gap is
given by the following when{x̂, µk(p)} is an optimal primal-dual pair of problem
(Pp),

v(Pp)− v(PpRµk(p)) = µk(p)[b −Gt(x̂)].
The focus of this paper is to provide fresh theoretical insights into the dual search
in integer programming. The resultingp-th power Lagrangian method yields an
optimal solution of the primal problem in a convergent dual-search solution pro-
cess.
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