ﬁl‘ Journal of Global Optimizationl8: 235-254, 2000. 235
i‘ © 2000KIluwer Academic Publishers. Printed in the Netherlands.

Success Guarantee of Dual Search in Integer
Programmingp-th Power Lagrangian Methad

D.LI™ and X. L. SUN

Department of Systems Engineering and Engineering Management, The Chinese University of
Hong Kong, Shatin, NT, Hong Kong (email: dli@se.cuhk.edu.hk); Department of Mathematics,
Shanghai University, Baoshan, Shanghai 200436, P. R. China

(Received 6 July 1999; accepted in revised form 15 April 2000)

Abstract. Although the Lagrangian method is a powerful dual search approach in integer program-
ming, it often fails to identify an optimal solution of the primal problem. Théh power Lagrangian

method developed in this paper offers a success guarantee for the dual search in generating an optimal
solution of the primal integer programming problem in an equivalent setting via two key transforma-
tions. One other prominent feature of theh power Lagrangian method is that the dual search only
involves a one-dimensional search within [0,1]. Some potential applications of the method as well as
the issue of its implementation are discussed.
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1. Introduction

The following general class of finite integer programming problems is considered
in this paper:

(P) min f(x) (1.1a)
st. gx)<b;, i=12,...,m, (1.1b)
x € X CRY, (1.1¢)

whereX is a finite integer set. Proble(P) is termed the primal problem. Without
loss of generalityf andg;, i = 1,2,...,m, are assumed to be strictly positive
for all x € X. Constraints in (1.1b) are called Lagrangian constraints. Défite
be the feasible region of the decision vectan (P),

F={x]gx)<b,i=12,...,m x € X}. (1.2)

Denote byv(Q) the optimal value of an optimization probleg®). Thus the
optimal objective value of the primal problemugP).
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The dual search method plays a significant role in integer optimization. The
Lagrangian methods are widely used in linear integer programming in finding
an optimal solution, see, e.g., Geoffrion (1974), Fisher and Shapiro (1974), Bell
and Shapiro (1977), Shapiro (1979), and Fisher (1981). In most situations, the
Lagrangian methods provide a lower bound {d@®). Incorporating the set of
Lagrangian constraints into the objective function by introducing a nonnegative

Lagrangian multiplier vectorp = (A1, A2, ..., A,) € R”, yields a Lagrangian
relaxation:
(PR min L(x.2) = f() + ) Ailgi(x) = b (1.3)

i=1
The Lagrangian dual is an optimization problemin
(D) max [v(PR;)]. (1.4)
reRY

The Lagrangian method searches for an optimal solutioPgfvia maximizing
the dual functiorv(PR;).

If # solves both(P) and (P R;) with & € R, then is said to be an optimal

generating Lagrangian multiplier vector.Afsolves both(P) and (P R;) with by
e R”, and  solves the dual probleniD), then{z, i} is said to be an optimal
primal-dual pair of( P).

While the Lagrangian method is a powerful constructive dual search method, it
often fails to identify an optimal solution of the primal integer optimization prob-
lem. Two critical situations could be present that prevent the Lagrangian method
from succeeding in the dual search. Firstly, the optimal solutioPofmay not
even be generated by solviig R;) for anyx > 0. Secondly, the optimal solution
to (PR;~), with A* being a solution to the dual proble@®), is not necessarily an
optimal solution to(P), or even not feasible. The first situation mentioned above
is associated with the existence of an optimal generating Lagrangian multiplier
vector. The second situation is related to the existence of an optimal primal-dual
pair.

As an illustrative example, let us consider Example 5.12 in Parker and Rardin
(1988):

min 31 + 2x2 (1.5)

s.t. gl(x) =10— 5x1 — 2X2 <7,
g2(x) = 15— 2x; — 5xp < 12,
integer
xeX=30<x<L 0<xmnL2

8x1+8xx>1

Note that in order to conform with the problem assumption in (1.1) the two Lag-
rangian constraints in (1.5) take forms equivalent to the original Lagrangian con-
straints in Ex. 5.12 of Parker and Rardin (1988). The explicit expression &f iset
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X ={(0,1),(0,2), (1,0, (1,1, (1, 2)}. Itis easy to check that oni, 2), (1, 1),
and(1, 2) are feasible for the problem. The optimal solutiow’is= (0, 2) with op-
timal valuev(P) = 4. If the conventional Lagrangian method is applied, the solu-
tions, (1, 0) and(0, 1), to problem(P R,) with A* = (1/3, 0) being the maximizer

of (D) are not optimal solutions afP). They are both infeasible f@P).

The main purpose of this paper is to integrate two equivalent transformations
that ensure the existence of an optimal primal-dual pair in an equivalent problem
setting, thus offering a success guarantee for the dual search in generating an op-
timal solution of the primal integer programming problem. Based on the existence
of an optimal primal-dual pair, we propose a convergetih power Lagrangian
method. An optimal solution to a Lagrangian relaxation problem is obtained at
each iteration of the method and a new multiplier is generated via dual search. One
prominent feature is that the dual search only involves a one-dimensional search of
a scalar Lagrangian multiplier within interval [0,1].

The organization of this paper is as follows. In Section 2;reorm surrog-
ate constraint method is adopted to construct a single-constraint surrogate model
that is exactly equivalent to the primal problem. The surrogate constraint method
developed in this paper is based on a similar technique recently developed in
Li (1999) for a more general problem setting. In Section 3-th power trans-
formation is investigated. Applying the-th power transformation to the objective
function guarantees the existence of an optimal primal-dual pair, thus ensuring the
success of the dual search. In Section 4, the results in Sections 2 and 3 lead to the
development of the-th power Lagrangian method. In Section 5, two classes of
nonlinear integer programming problems with real-world background are presen-
ted to show the potential applications of the propogeth power Lagrangian
method. The paper concludes in Section 6 with suggestions for future research.

2. Equivalent t-norm surrogate constraint formulation

The use of the surrogate constraint formulation in integer programming was in-
vestigated in Glover (1968), Karwan and Rardin (1979) and Karwan and Rardin
(1980). The surrogate constraint method converts a mathematical programming
problem with multiple constraints into a one with a single aggregated constraint
using a multiplier vector. The multiplier vector is successively adjusted such that
a surrogate dual is maximized. The surrogate dual in general, however, does not
guarantee the generation of an optimal solution of the primal problem. A surrogate
strategy termegh-norm surrogate constraint method was recently developed in Li
(1999) for general integer programming problems that yields an exact equivalence
between the primal problem and the surrogated one without any assumption of
convexity. We will give in this section a revised version of {h&orm surrogate
formulation in Li (1999).

Problem(P) can be always converted to an equivalent form wih= b, =
-« = b,,. We thus further assume, without loss of generality, that= b, =
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-+~ = b, = b > 0in (1.1). Problem(P) is then equivalent to the following
single-constraint problem:

min  f(x) (2.6a)

sit. gu(x) == maXgi(x),...,g,(x)} < b, (2.6b)

x e X. (2.6¢)

Let g(x) = (g1(x), ..., gn(x)). Note that the nonsmooth functign, (x) is ex-

actly the infinite normj| g (x)| -, Which can be approximated by the¢h norm

IgC) e = VIg1()Y + ... + [gn (O]

asrt tends to infinity. We further have

gux) _ gl
< < . 2.7
A t-norm surrogate constraint formulation @) is formed by replacing, (x) in
(2.6) byG,(x) = llg(x)|l; /v/m fort > 0,

(S min f(x) (2.8a)
st. G,(x) <b, (2.8b)
x € X. (2.8¢)

Let F, denote the feasible region ¢f,),
Fr={x | G/(x) <b; x € X}.

Itis clear from (2.7) that" C F, for anyt > 0. The surrogate probleiis;) is thus
a relaxation of P) whenr > 1. The following theorem shows that the sétsand
F will be identical if¢ is chosen sufficiently large.

THEOREM 2.1. Assume thak \ F # ¢. Let
gm(x)

U = min{ |xe X\ F}. (2.9)

ThenF = F, holds for allz > 1y, wheretg = In(m)/ In(U).

Proof. SinceF C F,, we only need to prové; C F. We first note from (2.9)
thatU > 1 sincegy (x) > bforanyx € X \ F. Hence, we have, > 0. If r > 1,
then

|xe X\ F}>1 (2.10)

Foranyx € X \ F, from (2.7) and (2.10), we have

Gi(®) _ gu(®)

1,
b ° bim
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thatis,x € F, and hencer; C F. O

The boundy is smaller in general situations than the one obtained in Li (1999).
Under a mild condition, an explicit bound ofn Theorem 2.1 can be specified.

COROLLARY 2.1. Suppose that al§;,i = 1, 2,..., m, are integer-valued func-
tions, e.g., polynomial functions with integer coefficients, farsth positive integer.
ThenF = F, for all t > 1, where

In(m)

=Nt b) /b

(2.11)

Proof. Sincegy (x) > b+ 1forallx € X \ F, we haveU > (1+ b)/b. The
conclusion then follows from Theorem 2.1. O

By selecting a sufficiently large all infeasible solutions of the primal problem
will be excluded fromF;. In other words, the feasible set defined by theaorm
surrogate constraing;, will exactly match the feasible set of the primal problem
for a sufficiently large. For illustration, let us consider the example problem, Ex.
5.12 in Parker and Rardin (1988), which we discussed in Section 1. To make the
right-hand sides equal for the two constraints, we multiglyx) by 12/19 and
g2(x) by 7/19. Applying then the-norm surrogate constraint method yields the
following formulation,

min 3x1 + 2x» (212)
st. [(12/19) (10— 5x3 — 2xp)" + (7/19) (15— 2x; — sxz)f]l/ ' < 2" 84/19,
integer
xeX= 0<x1<1, O<x2<2

8x1+8x2 > 1

It can be verified that when> 9, F;, = F and the-norm surrogate problem (2.12)
is equivalent to the problem (1.5).

An appropriate single surrogate constraint can be always constructed in aggreg-
ating multiple Lagrangian constraints of the primal problem such that a surrogate
formulation and the primal problem are exactly equivalent. This result offers a basis
in developing thep-th power Lagrangian method in the next section.

3. p-th power transformation

We have shown in the last section that the probl€ss and (P) are equivalent
whent > ro. We will develop in this section a dual search scheme usipgtia
power transformation for probler(sS;) with a fixed: > 7. The convexification
results derived from the-th power transformation are based on the analysis on
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the perturbation function ofS;). The perturbation function associated witfy) is
defined by:

¢(y) = min {f(x) | G,(x) <y; x € X}.

It can be easily seen that the perturbation functide a nonincreasing piecewise-
constant function ofy. The value of¢ remains at a constant level when no new
integer solution with smalley value becomes feasible. Hence, the perturbation
function is continuous from the right. The domaingof) is

Y = {y | there existsx € X with G,(x) < y}.

Based on the problem assumption, it is cl®as [y, co) with y = min,cx G, (x).
By the finiteness ofX, there exists a finit§ > 0 such thatp(y) remains at a
constant level, mip.y f(x), for anyy € [y, o). Therefore, the number of the
discontinuous points ap is finite. List them agay, az, - - - , ay} with

y=a<a<a<--<ay=Y. (3.13)

If ay < b,then(P) can be reduced to an equivalent unconstrained integer program-
ming problem without considering the constraint. In the following discussion, we
assume thaty > b. Lete; = ¢(a;),i = 0,1..., N. By the definition ofp, we

have

cg>c1>co>...>cy > 0. (3.14)

Now we impose g-th power on the objective function @f,). Problem(s;)
can then be represented by the following equivalent form,

(Pp) min [f(x)]p (315a)
st. Gi(x) <b, (3.15b)
xeX, (3.15¢)

wherep > 0. The Lagrangian relaxation of proble(R,) is given as follows with
a Lagrangian multipliepe > 0,

(P,R,) Erll)rg L,(x, ) =[fx)]" + ulG,(x) —bl. (3.16)
The Lagrangian dual afP,) is,
(D) max v(P,R,). 3.17)
neRy
Denote by, (y) the perturbation function associated witR,). It is clear that

¢,(y) = [¢(»)]”. The domain ofp,(y) and the set of discontinuous points of
¢, (y) are still the same as their counterpartity). Let

@, ={(y,y) | yYo=9,(y); y €Y},

E,={(a,c)|i=0,1,...,N}. (3.18)
A pointin E, will be called anoninferior pointof ®, or ¢,,. Obviously,(y, yo) €
E, iff (y, yo) € ®, and(z, yo) & @, foranyz < y.
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LEMMA3.1. Ifa, <b <aiforake{0,1,..., N—1}, then
v(P,) = c,f (3.19)

andx = argmin{[f (x)]” | G,(x) < a;} is an optimal solution ofP,) and of(P).

Proof. The lemma is obvious from the feasibility requirement and the fact that
the perturbation function is nonincreasing. O

LEMMA 3.2. (i) For anyy € Y, if x* solves the perturbated problem
¢p(y) = min{[f (x)]” | G,(x) < y; x € X},

then(G,(x*), [f(x")]?) € ®,.

(ii) If x* solves(P,R,,) for someu > O, then(G,(x*), [ f(x")]?) € E,,.

(iiiy For any(a;,c;) € E,, there existsc* € X such that(a;, ¢) = (G,(x*),
Lf(x5)]P).

(iv) There exists at least ortee X such thatt solves(P) and(G; (%), [ f(X)]?) €
E,.

Proof. (i) SinceG, (x*) < y, by the monotonicity ob,(y), we have f (x*)]7 =
¢,(y) < ¢,(G,(x*)). On the other hand, since’ is feasible in the perturbated
probleme, (y) = min{[f (x)]? | G;(x) < G;(x*); x € X}, we havep,(G,(x*)) <
[f(x")]P. Thus,g,(G;(x*)) = [f(x")]?, thatis,(G,(x*), [ f (x™)]") € D,,.

(i) Suppose that there exists &isuch thaf f (X)]” = ¢, (G, (x*)) with G, (%) <
G (x*). By the definition ofg,, we have,[f(X)]? < [f(xH)]7. If [f(X)]’ <
[f(x™)]7, then

Lf D) 4+ u(G (%) = b) < [f ()] + n(G,(x") = b),

which contradicts to the optimality of* in (P, R,,). We therefore have,, (G, (x*))

= [f(®)]” = [f(x*)]” and thus(G,(x*), [f(x")]?) € ®,. If, on the contrary,
(G (x"), [f(x")]?) & E, andG,(x*) > ap. Then, there exists @, yo) € ®, such
thaty < G,(x*) andyo = ¢,(y) = [f(x*)]”. Suppose thaltf (¥)]” = ¢, (y) with

G;(¥) < y. Then, we have

[f O + w(G(x) = b) < [f (M) + u(G,(x*) = b),

which is a contradiction to that* solves(P,R,,).

(i) Suppose that* solves the perturbated probl€frf (x)17 | G,(x) < a;; x €
X}, then[f(x*)]? = ¢ andG,(x*) < a;. From part (i), we know thatG, (x*),
[f(x)]?) € ®,. By the definition ofE,, we must haveG,(x*) = ¢; and so
(G (x*), Lf xHIP) = (@i, ]).

(iv) Let S* denote the set of optimal solutions(@¥). For anyx* e §*, it follows
from part (i) that(G, (x*), [ f (x*)]?) € @,. Letx = argminG,(x*) | x* € S*}.
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Figure 1. Perturbation function and its lower envelope.

Then, for anyz < G,(x), we havep,(z) > [ f(X)]” and hencéz, [ f(X)]”) & ®,,.
Therefore(G,(X), [ f(X)]?) € E,,. a

Now we define the lower envelope functionf(y) as

c§ — ro(p)(y — ao), ap <y <a
c] — pa(p)(y — ay), ap <y <a

V() = . (3.20)
e 1= pnyv-1(p)(y —an-1), any-1<y<ay
s ay <y < oo

where

=P

wi(p)=—>=2L 1 -0 i=01..,N—-1 (3.21)
dit1 — 4;

It is clear thatg,(y) > ¥,(y) forall y € Y ande,(a;)) = ¥,(a;) = ¢ fori =
0,1,...,N. See Figure 1 for graphical illustration. The lower envelope function
¥, (y) is continuous and piecewise linear. We have the following convexification
result fory, (y).
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THEOREM 3.1. Let
_In[(a + 1)/a]

B 3.22
po In(8) (3.22)
with
o= min (M) ’ (3.23)
O<iSN-2\ @jy1— a;
. Ci
P= o (Ci+l) ' (3.24)

Theny,(y) is a convex function of whenp > po.

Proof. We first observe from (3.13) and (3.14) that> 0 andg > 1. Thus,
po > 0. By the definition ofy,(y) (cf. (3.20)), the convexity ofs, (y) is equivalent
to the decreasing monotonicity of the sequetiag(p), ui(p), ..., un—_1(p)}.
From (3.21), the inequality,;.1(p) < u;(p) is equivalent to

p p p p
Cit1— Ciq2 - ¢ — 61

’

aj42 —djt1 aiy1 — a;

which is in turn equivalent to

1- (Ci+2/Ci+1)p ajy2 —diy1

3.25
(ci/civp)? — 1 ait1 — a; (3.23)
Note that
— . . p
1—(civ2/cit1) < 1 < 1 (3.26)
(ci/civp)? — 1 (ci/eivp? =1 ~ pr—1
and
o G2 T i (3.27)
aiy1 — 4a;
If p > po, then, by (3.22), we have 1/¢8- 1) < «. Thus, from (3.26) and (3.27),
we imply that (3.25) holds for each=0, ... , N — 2when p> po. O

The implication of Theorem 3.1 is clear. Wher> pg, ¥,(y) becomes a con-
vex function. Thus, a subgradientf,(y) exists atevery =a;,i =0,1,... , N.
Specially, by Lemma 3.2 (iv), a subgradientypf exists aty = G,(x), wherex is
an optimal solution of P,) andG,(x) = min{G,(x*) | x* € §*},if p > po. In
summary, the existence of an optimal generating Lagrangian multiplier is guaran-
teed wherp > pg. This convexification result will further lead to the existence of
an optimal primal-dual pair.
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THEOREM 3.2. Let x be such that solves(P), or equivalentlyx solves(P,),
and G;(x) = min{G,;(x*) | x* € S*}, whereS* is the set of the optimal solutions
of (P). Assume thatG, (%), [ f(£)]?) = (a c;). Then{x, ui(p)} is an optimal
primal-dual pair of problemP,) whenp > py.

Proof. We first prove that solves probleniP,R,, ). From the feasibility and
optimality of x, we havea,,1 > b. By Theorem 3.1)/,(y) is a convex function
of y whenp > po and—pu,(p) is a subgradient ofr,(y) aty = G,(X) = a;. We
have

[f OV + m(PIG(X) =y < ¥p(») < ¢p(y), Vye Y. (3.28)

Foranyx € X, lety = G,(x). Theng,(y) < [f(x)]”. It follows from (3.28) that

[f (1 = ¢p(y) 2 [f (DI + (PG (X) — G (x)],

which in turn yields

[f ()] 4+ (PG, (x) —b] = [f ()] + ux(p)[G,(X) — b]. (3.29)

Sincex € X is arbitrary, (3.29) implies that solves problen{P, R, ).

We now turn to prove that, (p) solves(D,). For any fixedu > O, if x,, solves
(P,R,), then by the definition ob, (y), we havep, (G, (x,)) < [f(x,)]”. Forany
y € Y, suppose thdtf (x)1” = ¢,(y) with G,(x) < y, then

¢p,(y) = [f(0)]”

= [f0)]" + ulGi(x) — y]

Lf ()1 + nlGi(x) — bl + w(b — y)
Lf ()1 + ulGi(xy) — bl + (b —y)

[f ()] + plGi(x,) — yl. (3.30)

Vol

Settingy = a; (i =k, k + 1) in (3.30) and noting that” = ¥, (a;) = ¢, (a;), we
have

=10V + plGi(x) —ail, =k, k+1. (3.31)
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Moreover, sinceé € [ay, a;11), there exists & € (0, 1] such that = ya; + (1 —
y)ai+1. We thus obtain from (3.21) and (3.31) that

V(PR (p) = [fD] + m(p)Gi(X) — D]
P _ M _ _
c lak — (yax + (L — y)agi1)]
Ai41 — dg
cp + A= y)cgy — )
vep + A —y)ely
YIS 4+ ulGi(x) —aly + A= I (x)]7 +
ulGi(x,) — aryl}
= [f(x)]" + (G, (x,) —b)
= v(P,R,).

WV

Henceu (p) solves(D,) whenp > po. O

COROLLARY 3.1. Suppose thayf andg;,i = 1, 2, ..., m, are integer-valued
functions, e.g., polynomial functions with integer coefficients famla positive
integer. Take a positive integergreater thats; defined in (2.11). Under the same
assumptions of Theorem 3{2, 1, (p)} is an optimal primal-dual pair of P,) for

all p > p1, where

In(g)

- M8 (3.32)
In[(1+ f)/f]

P1
with

§= max{(llg()ll.)" | x € X},
f=max{f(x)|xeX}

Proof. Note that the constrair@, (x) < b in (P,) is equivalent ta(||g (x)]l,)" <
mb'. ReplacingG, (x) andb by (||g(x)|l;)" andmb’ in (P,), respectively, we get an
integer-valued constraint functia®, (x) in (P,). It follows from (3.23) and (3.24)
that

1
az—F,
g—1
> g Gt 1 > 1 w:f
IISN-2 ¢4 f
Thus
In(g)
Po < p1.

oNx ———— =
In[(L+ f)/f]
The corollary then follows from Theorem 3.2. a
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The implication of Theorem 3.2 and Corollary 3.1 is significant. If the valye of
is selected to be equal to or larger thayor p;, then an optimal solution of problem
(P,) is guaranteed to be generated by the dual search. In other words, an optimal
solution of (P) can be generated by applying the conventional Lagrangian method
to problem(p,), i.e., the existence of an optimal primal-dual pair is ensured for
(P,) whenp > po.

4. p-th power Lagrangian method

Recognizing prominent features of probl€®),), the following special dual search
method is devised to facilitate the solution process. Set

n

w = .
14+ p

Problem(P,R,,) can be recast to the following equivalent form,

(Aw) min [(x, w) = (1= w)[f (D))" +w(Gi(x) - b), (4.33)

wherew € [0,1].

On the basis of the previous discussion, a solution algorithm optiepower
Lagrangian method is now proposed as follows. Geometrically, the algorithm per-
forms on the noninferior points of the perturbation functipn The algorithm
starts to determine the first and the last noninferior pointg jn(cf. (3.18)). At
each iteration, the Lagrangian relaxatiga,,) is solved withw = w/(1 + w),
where—p is the slope of the line connecting the two noninferior point®gfthat
are corresponding to the best feasible solution and the least infeasible solution up
to the current iteration, respectively. A new noninferior point will be generated if
the optimal solution has not been reached. Eventually, the algorithm will terminate
at two noninferior points ofp, that are nearest to the line= b on the left and
right, respectively.

p-th Power Lagrangian Method (pPLM)

Step 1Setw = 1. Solve(A,). Denote the optimal solution by’. If G, (x% —b> 0,
stop. There is no feasible solution. Otherwise ggt= [ £ (x%)1? andd; = G, (x°).
Step 2 Setw = 0. Solve(Ap). Denote the optimal solution . If G,(z°%) — b
<0, stop ;% is the optimal solution. Otherwise sgf =[f(z%)1” anddy = G, (9.
Step 3Setk = 0.
Step 4 Compute aw; satisfying

15, wy) = 125, wy). (4.34)

Step 5Solve(A,, ). Denote the optimal solution by . If x* solves(A,, ), stop,
xk is an optimal solution tgP). Otherwise, go to Step 6.
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Step 61f G,(y*) — b < 0, set

foa=rohY, fhi=f5
diy =G, df,y =d,
xk+1 — yk Zk+l — Zk-

Otherwise ifG,(y*) — b > 0, set

fk_+1 = fk_v f/:.ll = [f(yk)]p,
diyy = di, dfyy = GO,

XL gk kL gk

Setk := k + 1. Return to Step 4.

THEOREMA4.1.If p > po, where py is defined by (3.22), then the algorithm
(pPLM) stops at an optimal solution @) within a finite number of steps.

Proof. Suppose that the algorithm goes through Step 1 and Step 2. We first
observe from Step 1 and Step 6 that

15, we) = (L—wo) fy- +wildy —b), Yk =0, (4.35)
15 wy) = A —wp) fF +widf —b), Yk =0. (4.36)
Thus, by (4.34), we have
- _ rt+
wy = S~ k> 0. (4.37)

(fi = [+ —d;)

From the algorithmf,” > f;" andd; > d, for all k > 0. Equation (4.37) then
implies thatw; € (0,1) forall k > 0.

We now show that if the algorithm stops/ath iteration, i.e.x* solves(A,, ),
thenx* is an optimal solution t@P). From Step 1 and Step 6, we know thdt
is a feasible solution angf is an infeasible solution toP). Thus, we havel/, <
b < d;. By Lemma 3.2 (ii), points(d, , f;) and (d;", f") belong to setE,.
We claim that there is n@a;, ¢/) € E, such thatg; lies betweend, and d;
and hence we can conclude by Lemma 3.1 #tfais an optimal solution of P).
Suppose on the contrary, there exigts c’) € E, such thatl; < a; < d;", then
a; = Ad; + (1 — A)d;" for somex € (0, 1). Sinceyr, (y) is a convex function of
and is strictly decreasing &g, ay], we have

¢ = Ypa)

M) + (L= DY, (d)
= AT+ A= ST (4.38)

A
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By Lemma 3.2 (jii), there exist§ € X such that(a;, ¢/) = (G,(%), [f(X)]?). We
thus obtain from (4.35), (4.36) and (4.38) that
V(Ay) < A= wilf(D1 4+ we(G (%) —b)
= (L—woc! +wila; — b)
1 —wolrfie + A=) 1+ welhdy + (L= Wdf — b]
= AIGF wp) + Q=) 1 wy)

= 15, wy),

A

where the last equality follows from (4.34). This contradicts to the assumption that
xk solves(A,,).

Next we prove the finite termination of the algorithm. We notice from (4.34)
that if the algorithm does not stop &ith iteration, then neithet* nor z* solves
(Ay,). Let

ue =105, wy) = 15, wy). (4.39)
Then
LS, wi) < uy. (4.40)

By Lemma 3.2 (jii), there exists ane {0, 1, ... , N} such thata;, c/) = (G,(y"),
[f ()17). We will show by contradiction that, < G,(y*) < d;'. Suppose that
G,(") > 4, thend,” = ra; + (1 — A)d, for somex € (0, 1). By (4.35), (4.36),
(4.39) and the convexity af,(y), we obtain
ue = (I—w) fi + wiedf —b)

= (11— w)¥,(d) + wild —b)

< A —w)p(@) + A — WY, (d)] + we(dd —b)

= MA - w)lf O +wi(G () = b)) + (1 = Wuy

= MO, we) + (L= Dug
This contradicts to (4.40). Therefor€;, (y*) < d;. Similarly, we can prove
G, (") > d; . Since neithex* nor z* solves(A,,), we must havel, < G,(y*) <
d; . Thus, by the updating rules in Step 6, the ranggipf d,' ] is strictly decreas-

ing ask increases. Since the sgj}, is finite, an optimal solution must be reached
at Step 5 within a finite number of steps. a

Now we demonstrate the solution algorithm by applyind?(M) to the ex-
ample problem, Ex. 5.12 in Parker and Rardin (1988). The Lagrangian relaxation
of (2.12) is
min L, (x, 1) = [f ()17 + p{[(12/19)g1 ()] + [(7/19)g(x)]" — 2 x (84/19)'}

x integer

st xeX={0<x<1,0<x <2
8x1 + 8xx > 1
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Table 1. Solution process of the example problem=(p = 9)

k 1 2 3 4
w 1 0 0.1103 0.16856

»* 0,2) 0.1) (1,0) (0,2) & (1,0)

Lf (%P 262,144 512 19,683 262,144 & 19,683
Gi(y¥)—b —1.1291E+6 98069E+5 6.6862E+4 —11291E+ 6& 6.6862E+ 4
v(Aw,) —11291E+6 512 24888E+4 27635E+4

xk (0,2) 0,2) (0,2)

i 262,144 262,144 262,144

d; 1.6139E+5  16139E+5 16139E+5

Z* (0,1) (1,0)

i 512 19,683

d 22712E+6 13574E+6

Table 1 shows the solution process usipP(M) with 1 = p = 9. At iteration

4, bothx* = (0, 2) andz* = (1, 0) solve problem(A,,) with w, = 0.16856. The
optimal solutionx* = (0, 2) has thus been successfully identified through the dual
search and is equal & at iteration 4.

In addition to the existence guarantee of a primal-dual pair and the success
guarantee of the dual search associated witlpttiepower Lagrangian method, the
reduction in the dimension of the Lagrangian multiplier greatly facilitates the solu-
tion process. The Lagrangian multiplier is a scalar in theptitle power Lagrangian
method, while it is of am:-dimension in the conventional Lagrangian method.

The emphasis of this paper is to provide a theoretical foundation in character-
izing the existence of optimal generating Lagrangian multiplier vectors and the
existence of optimal primal-dual pairs. The computational aspects of the proposed
p-th power Lagrangian method need to be further explored. Compared to the con-
ventional Lagrangian method, a major disadvantage optlie power method is
the nonlinearity inherent in the-th power transformation (3.15) as well as in the
t-th norm surrogate transformation (2.8). When the original problem is of a linear
form, the p-th power method makes it nonlinear. When the original problem is of
a separable form, the-th power transformation makes it nonseparable. Promising
application areas of the-th power method thus seem to be in nonlinear nonsep-
arable integer programming problems. For example, notice that any power of a
zero-one variable is itself. Polynomial zero-one programming problem thus is an
area where thp-th power Lagrangian method could show its computational prom-
ise in problem solving practice. Two classes of nonlinear integer programming
problems are investigated in the next section to show the the potential applications
of the proposeg-th power Lagrangian method.
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5. Applications

Problem(A,) at the lower level in the dual search can be viewed as a type of ‘un-
constrained’ integer programming problem. The computational aspect in solving
(Ay) is largely dependent on the problem structure. In this section we illustrate po-
tential applications of the proposedth power Lagrangian method to two classes
of nonlinear integer programming problems.

PROBLEM 1. Consider a network system consisting: afubsystems. Let;
denote the number of the same redundancy components in paralleh isub-
system. The reliability of the-th subsystem iR;(x;) = 1 — (1 — r;)*, where
r; € (0, 1) is the reliability of a fixed component iirth subsystem. Also, denote
by C;(x;) the resource consumed in théh subsystem and hythe total available
resource. The constrained redundancy optimization problem in a complex network
(Tzafestas (1980)) can be formulated as

min Q(x)=1—g(Ry, Ro,...,R)) (5.41a)
s.t. Cx) =h(Ci(x), Calxy), ..., Cu(x,)) < b, (5.41b)
xeX={x|L <x; <U, x;integet i =1, ... ,n}, (5.41¢)

whereQ (x) andC (x) represent the overall unreliability of the system and the total
resource consumed, respectively, ghdndg are in general nonconvex functions
onR". Inherent properties in the complex reliability system are that @ (x) <

1 andC(x) > O, for all x € X. Solution methods in the literature for (5.41)
are mainly heuristic, see Tzafestas (1980), Tillman et al. (1980) and Ohtagaki et
al. (1995). When branch and bound approach is used to solve (5.41), one has to
obtain at each node of the search tree a global optimal solution to a nonlinear
constrained nonconvex optimization problem, for which few efficient methods are
known (Horst and Tuy (1993)). Now we apply tipeth power Lagrangian method

to (5.41) by incorporating the nonlinear constraintx) < » into the objective
function. In consideration of computational stability, we take exponential to the
objective functionQ(x). Since (5.41) is a singly inequality constrained problem,
its p-th power Lagrangian relaxatiam ) (cf. (4.33)) is

min (1 — w) exp(pQ(x)) + w(C(x) — b). (5.42)

This problem is much more tractable than (5.41) as the branch and bound method
for (5.42) now involves solving an unconstrained global optimization problem over

a box set at each node of the search tree. A number of computational implementable
algorithms have been developed to globally minimize a nonconvex function over a
box set, based on both deterministic approaches (see, e.g., Barhen et al. (1997), Ge
(1990) and Horst and Tuy (1993)) and stochastic approaches (see, e.g., €vijovi
and Klinowski (1995) and Rinnoy Kan and Timmer (1987a, b)).
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Now consider an instance of problem (5.41) for a bridge network with 5 ele-
ments (Tzafestas (1980)):

min Q(x) =1— RiR> — Q2R3Rs — Q1R2R3R,
— R1Q203R4R5 — Q1R2R304Rs
s.t. C(x) = x1x2 + 3xoxz + 3xoxs + x1x5 < 28,
1<x <6, x;integer i =1,---,5,

whereQ; = 1—R; :=1— Ri(x;),r. = 07,7, = 0.85,r3 = 0.75,r4 = 0.8,
rs = 0.9. The optimal solution of this examplei$ = (2, 1, 4, 4, 1) with Q(x*) =
0.006569. Takep = 10 in algorithm pPLM). At each iteration of the algorithm,
the box-constrained integer programmigyy,) (cf. (5.42)) is solved by a branch
and bound procedure. The algorithm stops at iteration 7 with the optimal solution
x'=(2,1,4,4,1).

PROBLEM 2. Consider the following integer convex programming:

min f(x) (5.43a)

st. g(x)<0,i=1,...,m, (5.43b)
xeX={x]|Ax <b, Bx =c, xisintegral, (5.43¢c)

where f andg; (i = 1,...,m) are nonlinear convex functiond, € R"™*" B e

Rz b e R, ¢ € R2, andX is a finite set.

Optimization problems with the structure given in (5.43) arise in many areas of
practical interests (see, e.g., Cooper (1981), Kraay et al. (1991) and Sung and Cho
(1999)). Computational difficulty, however, may be caused by the nonlinear con-
straints (5.43b) when outer approximation algorithm (Fletcher and Leyffer (1994))
or branch and bound method (Gupta and Ravindran (1985)) is adopted to solve
(5.43). Thep-th power Lagrangian method presented in this paper provides an
approach to reduce (5.43) to a sequence of linearly constrained convex integer pro-
gramming problems. In fact, by Theorem 2.1, (5.43) has the following equivalent
form for a suitable > 0 (cf. (3.15)):

min exp(pf(x)) (5.44a)

st ) explgi(x) < m, (5.44b)
i=1

x € X, (5.44c¢)

where we have taken exponential transformationg'te) andg;(x) < 0 (i =
1,...,m). Thus, thep-power Lagrangian relaxatiofd ) of (5.44) is

min (1 — w) exp(pf (X)) + w() _ expirg; (x)) — m) (5.45a)
i=1
st.x € X. (5.45b)
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It is clear that for anyp > 0 andr > 0, (5.45) is a linearly constrained convex
integer programming, for which various algorithms have been developed by ex-
ploiting the polyhedral nature of the constraint Xgfsee Cooper (1981), Gupta and
Ravindran (1985), Michelon and Maculan (1991) and Skorin-Kapov and Granot
(1987)).

Consider the following example of problem (5.43):

4
min f(x) = 1/200 (Z(x,? — 224 (x& — 1)2>
i=1
st g1(x) = x% + (xo — 5)4 + x§ + (x4 + 5)4 —
— 3x1x2 — X3X4 + X5 — 700§ 0,
x integer

—Xx1+ 2xp — 2x3 +5x4 — 2 <0,

2x; —x2 —2x3+x5 —2< 0,

—4<x; <4,i=1,...,5

xeX=

The optimal solution of this example is = (2, 2, 1,0, 1) with f(x*) = 0.065.

We takep = 8 in algorithm pPLM). The linearly constrained convex integer
programming(A,,) at each iteration is solved by a branch and bound procedure.
After 8 iterations, the algorithm stops at the optimal solutiér= (2, 2, 1, 0, 1).

6. Conclusions

Theoretical breakthroughs have been made in this paper to guarantee the success of
the dual search by ensuring the existence of a primal-dual pair in integer program-
ming. Two key equivalent transformations are involved in the solution process,
thes-norm surrogate constraint formulation that converts an integer problem with
multiple Lagrangian constraints into an equivalent one with a single surrogate Lag-
rangian constraint, and theth power transformation that takesth power on the
objective function. When the valueso@ndp are selected large enough, these two
equivalent transformations ensure the existence of an optimal primal-dual pair, in
a new equivalent setting, for problems where an optimal primal-dual pair may not
exist in the original setting.

The results presented in this paper can be also viewed as a companion of Li
(1995) in which a convexification scheme usipgh power transformation is de-
veloped for general nonconvex nonlinear programming problems. It reveals, in Li
(1995), that a saddle point can be generated for a class of honconvex optimization
problems in an equivalent representation space and the primal-dual method is then
guaranteed to succeed with a zero duality gap. In a similar mannes;ttheower
transformation is applied in this paper to the perturbation function of integer pro-
gramming problems. Less can be achieved, however, in the integer programming
case than in the nonlinear programming case, as we observe in the paper. We
can only convexify the lower envelope function of the perturbation functjgy,
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not the perturbation function itself. While theth power Lagrangian method can
guarantee to generate an optimal solution of prob{éty) and problem(P) via

dual search, the duality gap is in general nonzero. Specifically, the duality gap is
given by the following wherix, u,(p)} is an optimal primal-dual pair of problem
(Pp),

v(Pp) = v(PpRus(p) = ik (p)Ib — G (D)].

The focus of this paper is to provide fresh theoretical insights into the dual search
in integer programming. The resultingth power Lagrangian method yields an
optimal solution of the primal problem in a convergent dual-search solution pro-
cess.
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